
www.manaraa.com

Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Theses and Dissertations 

2005-06-01 

Phishing Warden: Enhancing Content-Triggered Trust Negotiation Phishing Warden: Enhancing Content-Triggered Trust Negotiation 

to Prevent Phishing Attacks to Prevent Phishing Attacks 

James Presley Henshaw 
Brigham Young University - Provo 

Follow this and additional works at: https://scholarsarchive.byu.edu/etd 

 Part of the Computer Sciences Commons 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Henshaw, James Presley, "Phishing Warden: Enhancing Content-Triggered Trust Negotiation to Prevent 
Phishing Attacks" (2005). Theses and Dissertations. 322. 
https://scholarsarchive.byu.edu/etd/322 

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion 
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please 
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F322&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F322&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/322?utm_source=scholarsarchive.byu.edu%2Fetd%2F322&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


www.manaraa.com

PHISHING WARDEN: ENHANCING CONTENT-TRIGGERED TRUST 

NEGOTIATION TO PREVENT PHISHING ATTACKS 

 

 

by 

James Presley Henshaw 

 

 

 

A thesis submitted to the faculty of 

Brigham Young University 

in partial fulfillment of the requirements for the degree of 

 

Master of Science 

  

Department of Computer Science 

Brigham Young University 

May 2005



www.manaraa.com

 



www.manaraa.com

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © 2005 James Presley Henshaw 

All Rights Reserved  

  



www.manaraa.com

 

  



www.manaraa.com

 

 

BRIGHAM YOUNG UNIVERSITY 
 
 
 

GRADUATE COMMITTEE APPROVAL 
 
 
 
 
 

of a thesis submitted by 
 

James Presley Henshaw 
 
 
 

This thesis has been read by each member of the following graduate committee and by 
majority vote has been found to be satisfactory. 

 

 

 

_______________________      _____________________________________________ 

Date         Dr. Kent E. Seamons, Chair 

 

 

_______________________      _____________________________________________ 

Date         Dr. Charles Knutson 

 

 

_______________________      _____________________________________________ 

Date         Dr. Robert Burton 

  



www.manaraa.com

 

  



www.manaraa.com

 

BRIGHAM YOUNG UNIVERSITY 
 
 
 
As chair of the candidate's graduate committee, I have read the thesis of James Presley 
Henshaw in its final form and have found that (1) its format, citations, and 
bibliographical style are consistent and acceptable and fulfill university and department 
style requirements; (2) its illustrative materials including figures, tables, and charts are in 
place; and (3) the final manuscript is satisfactory to the graduate committee and is ready 
for submission to the university library.  
 
 
 
 
__________________________ __________________________________________ 
Date      Dr. Kent E. Seamons  

Chair, Graduate Committee  
 
 
 
Accepted for the Department    

__________________________________________ 
 Dr. David Embley 

Graduate Coordinator  
 
 
 
Accepted for the College    

__________________________________________ 
 G. Rex Bryce 

Associate Dean, College of Physical and 
Mathematical Sciences 

  



www.manaraa.com

 

  



www.manaraa.com

 

ABSTRACT 
 
 
 

PHISHING WARDEN: ENHANCING CONTENT-TRIGGERED TRUST 

NEGOTIATION TO PREVENT PHISHING ATTACKS 

 

 

 

 

James Presley Henshaw 

Department of Computer Science 

Master of Science 

 
 
 

Phishing attacks are spam e-mails that attempt to fool recipients into divulging their 

identifying information by posing as a message from a well known company and using 

that company’s branding and logos. It is estimated that phishing attacks have cost bank 

and credit card customers $1.2 billion in the U.S. in 2003. Previous work, content-

triggered trust negotiation (CTTN), filters Internet traffic for sensitive data, and prevents 

a user from disclosing sensitive information to an un-trusted server. However, existing 

CTTN implementations are vulnerable to client-side scripts that obfuscate any data the 

client’s browser sends to the web server in order to bypass CTTN’s filter.  

  



www.manaraa.com

 

To increase the security of CTTN, this thesis introduces Phishing Warden, a browser-

plug-in that filters content before client-side scripts can execute, thereby preventing the 

scripts from obfuscating data in order to bypass the filter. Phishing Warden negotiates the 

release of sensitive data through web forms via the AutoFill button. After Phishing 

Warden determines the web server is trustworthy of the requested information, the 

sensitive data is automatically inserted into the form, indirectly informing the user that 

Phishing Warden trusts the server with this information 

Besides potentially obfuscating data, scripts in Internet browsers can exploit security 

vulnerabilities which allow malicious scripts to potentially take over the computer, or 

deceive the user with a fake toolbar [31]. In addition to preventing data obfuscation by 

client-side scripts, Phishing Warden also allows a user to customize script control with 

the push of a button, letting the user decide which websites to trust enough to run scripts. 

Phishing Warden extends CTTN to remember past sites deemed trustworthy by the user.  

  



www.manaraa.com

 

ACKNOWLEDGEMENTS 
 
 
 
 

I would like to thank all the people that have helped me with this thesis. Namely, 

Dr. Kent Seamons for his mentoring and wonderful inspirations, the members of the 

ISRL for their reviews and feedback, and the university for providing me with my 

education. I would also like to personally thank Tim van der Horst for his help in 

implementing Phishing Warden. I am grateful for my father and brother for motivating 

me to get my master’s degree. Last and most important of all, I especially thank my wife, 

Joy, for her love and support. 

This research was supported by funding from Zone Labs, Inc., DARPA through 

SSC-SD grant number N66001-01-1-8908, the National Science Foundation under grant 

no. CCR-0325951 and prime cooperative agreement no. IIS-0331707, and The Regents 

of the University of California. 

  



www.manaraa.com

 

  



www.manaraa.com

 

Table of Contents 

INTRODUCTION.........................................................................................................................................1 
1.1 THESIS STATEMENT...............................................................................................................................6 
1.2 MOTIVATING SCENARIO ........................................................................................................................6 

RELATED WORK .......................................................................................................................................9 
2.1 SPOOFGUARD ........................................................................................................................................9 
2.2 TRUST NEGOTIATION...........................................................................................................................10 
2.3 CONTENT-TRIGGERED TRUST NEGOTIATION.......................................................................................12 

PHISHING WARDEN................................................................................................................................15 
3.1 DESIGN................................................................................................................................................15 
3.2 IMPLEMENTATION ...............................................................................................................................21 

3.2.1 Browser Helper Object ...............................................................................................................21 
3.2.2 Toolbar .......................................................................................................................................22 
3.2.3 Sensitive Data Manager..............................................................................................................26 
3.2.4 Trust Manager ............................................................................................................................28 

RESULTS AND ANALYSIS......................................................................................................................31 
4.1 USABILITY...........................................................................................................................................31 
4.2 THREAT ANALYSIS ..............................................................................................................................33 

4.2.1 Threat Analysis of Information Flow between Browser User and Web Server...........................34 
4.2.2 Private Key Compromise ............................................................................................................35 
4.2.3 Attacking Stored Information......................................................................................................36 
4.2.4 Spoofing Attacks .........................................................................................................................39 
4.2.5 Misconfiguration.........................................................................................................................40 

4.3 PERFORMANCE RESULTS .....................................................................................................................41 
CONCLUSIONS AND FUTURE WORK.................................................................................................43 

5.1 CONCLUSIONS .....................................................................................................................................43 
5.2 FUTURE WORK.....................................................................................................................................45 

BIBLIOGRAPHY .......................................................................................................................................47 
APPENDIX A – ECML EXAMPLE..........................................................................................................51 
 

  xiii



www.manaraa.com

 

 

  xiv



www.manaraa.com

 

List of Figures 

Figure 1: Architecture for Trust Negotiation________________________________________________11 
Figure 2: State diagram for dynamic client content access control system in content triggered trust 
negotiation __________________________________________________________________________12 
Figure 3: Content-triggered trust negotiation’s content classification function _____________________13 
Figure 4: Flow of information in an Internet browser_________________________________________17 
Figure 5: Model of trust negotiation without a proxy by using the browser plug-in Phishing Warden____18 
Figure 6: The components of Phishing Warden______________________________________________21 
Figure 7: Phishing Warden toolbar _______________________________________________________23 
Figure 8: Phishing Warden sensitive type configuration GUI___________________________________26 
Figure 9: Diagram illustrating the ways an identity thief might steal personal information____________33 
 

  xv



www.manaraa.com

 

  xvi



www.manaraa.com

 

 

List of Tables 

Table 1: Default security zone to security level mappings ............................................................................24 
 

  xvii



www.manaraa.com

 

  xviii



www.manaraa.com

 

Chapter 1 

Introduction 

Phishing attacks are one of the newest, fastest growing, and perhaps costliest 

forms of attack on the Internet. They are performed through spoofing (impersonating) 

email addresses to lure unsuspecting individuals into cleverly replicated websites that 

trick users into revealing their sensitive information. The cost of damages due to phishing 

attacks targeting patrons of banks and credit card companies in the U.S. is estimated at 

$1.2 billion for 2003. Between the months of August 2003 and April 2004, the number of 

phishing attack e-mails increased by a factor of 10, to 3.1 billion per month [21].  

The following example illustrates a typical phishing attack: 

Bob checks his e-mail account from his home computer using his favorite e-mail 

viewer. He notices an e-mail marked “urgent” from “eBay Accounts” with the 

subject “Account verification, please follow instructions so your eBay account 

will not be disabled.” Bob nervously opens the e-mail to discover a message 

stating that eBay is purging their database of unused accounts and telling him to 

follow this link to eBay to verify his account information so his account will not 

be disabled. Bob follows the link and sees the familiar eBay logo with a form that 

requires him to fill in his identifying information including: eBay user name, 

eBay password, full name, address, social security number, credit card 

information, and PIN number. Bob fills in the information and submits it, 

thinking he has successfully verified his account to eBay, when in reality he has 

become the latest victim of a phishing attack. 

Because an attacker can easily duplicate a web site using copies of company logos 

and adopting a similar website template, it can be difficult for a user to visually 

  1



www.manaraa.com

 

distinguish between legitimate and fraudulent websites. Phishing attacks exploit this 

vulnerability by luring users to fraudulent sites with the express purpose of coercing the 

user into divulging sensitive information. Usually, these attacks are instigated through 

forged e-mails. Another way of luring individuals to cloned websites, called typo 

pirating, is by slightly changing the domain name of a website from a name like 

paypal.com to paypa1.com. Several proposals have been made to help internet surfers 

detect duplicate web pages and prevent the submission of sensitive information to 

untrustworthy sites [1].  

One way to thwart a phishing attack is to prevent the fraudulent e-mail from being 

received and believed. At the heart of the problem is the lack of authentication in the e-

mail transport protocol, SMTP. To overcome this shortcoming, several researchers have 

proposed to introduce e-mail authentication through digital signatures [25] [26]. The idea 

is simple enough: Don’t trust what is not signed. E-mail clients can detect spoofed e-mail 

addresses by verifying the digital signature using the known public key of the sender, and 

displaying a visual icon to notify the user that the signature is valid. Users are less likely 

to visit links in an e-mail that does not contain a valid digital signature. 

One of the latest phishing solutions prevents a user from visiting known phishing 

sites by creating a black list. Every time a browser opens a new page, the program checks 

to see if the page is on the list of known phishing sites. If the site is on the list, the user is 

alerted and prevented from submitting data to the website, thus reducing the risk of 

identity theft. EarthLink is one of the first companies to provide this program free for 

download [11]. While this solution is effective for users fortunate enough to go to 

phishing sites on the black list, those who visit phishing sites too new for the blacklist 

  2



www.manaraa.com

 

may still fall victim to identity theft. The black-list approach is limited due to the short 

lived nature of phishing sites which are usually only available for a few hours or days [6].  

Another approach to thwarting a phishing attack is to prevent the user from 

leaking sensitive information to a phishing server. Two solutions that adopt this approach 

are SpoofGuard [6] and content-triggered trust negotiation (CTTN) [16] [18]. 

SpoofGuard is an Internet Explorer (IE) plug-in developed at Stanford to thwart 

phishing attacks. SpoofGuard monitors all incoming web pages and computes a score, 

ranging from 0 to 1, for the URL, images, links, password field, domain name, referring 

page, and image-domain associations. The results of each computation are fed through a 

scoring function to create a composite score. A larger composite score denotes a higher 

risk of a phishing attack. According to the composite score, SpoofGuard’s safety 

indicator changes from green (safe), to yellow (caution), to red (this is a phishing attack). 

The key to SpoofGuard phishing prevention is the monitoring of all information the 

browser posts for sensitive content and warning the user if the current web page has a 

non-green safety indicator [6].  

Another solution to phishing attacks is based on trust negotiation [28]. Trust 

negotiation is an attribute-based authentication paradigm, unlike current identity-based, 

username/password schemes. Most identity-based systems map users to a role by 

verifying that they know the password associated with the username. In trust negotiation, 

the username and password are replaced with credentials (digital certificates signed by an 

issuing authority), such as a driver’s license. With these credentials, parties are able to 

prove that they possess certain attributes. When a client requests a secure resource on a 

server, the server checks the policy governing the resource. The policy states the 

  3



www.manaraa.com

 

credentials for which the client must prove ownership in order for the resource to be 

released. The server may initiate trust negotiation with the client by sending a policy to 

be satisfied. Either party may consider their credentials to be sensitive, and first disclose a 

policy protecting the credential in order to determine whether they should trust the other 

party enough to disclose the sensitive credential. The process of negotiating trust 

continues with the bi-lateral exchange of credentials and policies until the initial policy 

that began the negotiation is satisfied or the negotiation fails. 

Content-triggered trust negotiation extends trust negotiation to allow the client to 

initiate the negotiation to verify that the server can be trusted with sensitive information. 

A proxy is placed between the browser and the server to monitor all traffic being sent to 

the server by scanning the transmitted data for sensitive information. If any sensitive 

information is recognized, the corresponding policy for each sensitive piece is used in the 

generation of a conglomerate policy that is sent to the server. The proxy initiates trust 

negotiation to decide whether the server is trustworthy to receive the sensitive 

information. If the server proves trustworthy, then the proxy sends the sensitive data to 

the server and returns the response received from the server. If trust negotiation 

determines the server is not trustworthy, the user receives a warning message and is given 

the option to ignore the failed negotiation and send the sensitive content despite the 

possibility of an attack [16] [18].  

Both content-triggered trust negotiation and SpoofGuard help raise the difficulty 

level of launching a successful phishing attack. However, both proposals rely on reading 

the post data after it is sent by the browser but before it is received by the server. This 

reliance makes both methods susceptible to client-side scripting that can obfuscate 

  4



www.manaraa.com

 

sensitive information before it is filtered. An adept phishing attacker could encrypt the 

user input before submitting the form, thus eluding the scans of both SpoofGuard and 

CTTN. Both previous works acknowledge this weakness and suggest turning off client-

side scripting to prevent such an attack. While this would successfully prevent scripting 

obfuscation, it would also hinder web page functionality, driving users away from such a 

solution. 

In order to maintain full functionality and prevent any scripts from obfuscating 

the post data, the sensitive data must be analyzed at a higher layer. One method to 

accomplish this is through a prevalent browser plug-in feature, AutoFill, which scans the 

web page for forms and fills in the requested input fields. Before filling in the input 

fields, each field can be checked for sensitivity.  

The current implementation of content-triggered trust negotiation permits the user 

to submit information to be processed for trust negotiation and returns the status (success 

or failure) of the negotiation. If trust negotiation fails, the user can choose to trust the site 

and submit the data. The current implementation does not, however, retain the trusted site 

in memory and prompts the user on subsequent visits to verify whether the current site 

should be trusted. 

Losing sensitive information is not the only worry of browser users. Since 

malicious sites are able to exploit security holes in browsers, surfers should be wary of 

the sites they visit. Client-side scripts pose a threat to browser security. CERT 

recommends that browser users turn scripts off while surfing [4]. Internet browser users 

seldom heed this warning because needed features of trusted websites would stop 

functioning. Some scripting attacks can allow an attacker to gain full control of the 

  5



www.manaraa.com

 

computer, while others try to deceive the user with a fake toolbar. Although most 

browsers let the user customize the browser scripting permissions, they do not provide a 

readily available interface for permitting scripts to run temporarily. 

1.1 Thesis Statement  

In order to prevent the loss of sensitive data in web form submissions to malicious 

client-side scripts that obfuscate form data, it is proposed that content-triggered trust 

negotiation be moved higher in the application layer. To accomplish this, a toolbar must 

be added to IE. This toolbar negotiates trust on the filling of web forms through the 

AutoFill feature, preceding any client-side scripting which could obfuscate form data. 

The toolbar also provides an interface to control the IE security zones, which are used to 

control the script execution privileges. Content-triggered trust negotiation must also be 

enhanced to remember human interaction in the trust-building process, allowing users to 

control the addition of new trusted sites. These additions to content-triggered trust 

negotiation, collectively integrated into a browser helper object called Phishing Warden, 

will assist Internet users in their fight against identity theft. 

1.2 Motivating Scenario 

The following scenario revisits the earlier example of Bob checking his e-mail 

and illustrates how a phishing attack is thwarted using Phishing Warden. 

Bob checks his e-mail account from his home computer using his favorite e-mail 

viewer. He notices an e-mail marked “urgent” from “eBay Accounts” with the 

subject “Account verification, please follow instructions so your eBay account 

will not be disabled.” Bob nervously opens the e-mail to discover a message 

stating that eBay is purging their database of unused accounts and telling him to 

follow this link to eBay to verify his account information so his account will not 

  6



www.manaraa.com

 

be disabled. Bob follows the link and sees the familiar eBay logo with a form that 

requires him to fill in his identifying information including: eBay user name, 

eBay password, full name, address, social security number, credit card 

information, and PIN number. Bob clicks Phishing Warden’s AutoFill button 

which starts a trust negotiation for the sensitive information. Bob is prompted 

with a warning message stating that trust negotiation has failed and notices that 

none of the sensitive values are filled in by Phishing Warden. He thus assumes 

that the website must be fraudulent because his past dealings with eBay have 

succeeded using trust negotiation. No information is sent to the phishing website 

and Bob informs eBay of this latest phishing attack.  

 

  7



www.manaraa.com

 

  8



www.manaraa.com

 

Chapter 2  

Related Work 

2.1 SpoofGuard 

SpoofGuard is an IE plug-in designed to detect if a website exhibits the common 

characteristics of phishing sites. SpoofGuard does this by computing a score based on 

seven web page characteristics: the URL, images, links, password field, domain name, 

referring page, and image-domain associations [6]. The score ranges from 0 to 1 where a 

0 indicates the safest web site score and a 1 indicates the web site is most likely to be a 

phishing attack.  

The URL and links are checked to see if they contains the ‘@’ character. While 

this was a common characteristic of phishing URLs when SpoofGuard was created, IE 

has since been updated to prevent users from following links with the ‘@’ character, 

rendering this security check obsolete for users who run the cumulative security update 

for IE [20]. This check is still useful for users who have not updated IE.  

Since most phishing sites use images directly from the websites they are spoofing, 

SpoofGuard checks all images against a database of frequently spoofed website images. 

The image test can also be fooled by splitting the image into segments that appear as one 

continuous image to the user, but are in fact separate image files.  

SpoofGuard’s referring page test detects whether the page the user is coming from 

is a known e-mail site, such as hotmail.com. Because phishing attacks rely on links 

embedded in the e-mail, the referring page test is of great help in detecting possible 

phishing attacks by scoring pages from e-mail sites higher. 

  9



www.manaraa.com

 

The password check is one of the most valuable features of SpoofGuard. It 

protects users from sending passwords in plain text by checking to see that the user is 

using HTTPS and that the certificate is valid. SpoofGuard hashes each password and 

checks it against a database of hashed passwords. SpoofGuard checks all values 

submitted in the form to see if they are possibly a password. If SpoofGuard detects a 

password associated with another domain, then SpoofGuard increases the score for the 

web page to reflect a possible attack.  

2.2 Trust Negotiation 

 Trust negotiation is a new authentication paradigm that leverages digital 

credentials and access control policies to negotiate trust. Digital credentials contain the 

attributes that a trusted third party asserts are true about another party. An example of a 

credential is a student credential, where a university (the trusted third party), asserts that 

the holder of the student credential is a student of the university. Access control policies 

can be satisfied by the exchange of these digital credentials. An example access control 

policy states that a customer must prove he is a student in order to receive a student 

discount. Trust agents act on behalf of the negotiating parties to automate the process of 

negotiating trust. 

 Use of the example student credential and access control policy is illustrated in 

the following scenario: 

Johnny is a student of Brigham Young University (BYU) and has been issued a 

student credential from BYU. Johnny visits a local cinema online and requests a 

student discount on a movie ticket. The cinema’s website trust agent has an 

access control policy protecting the student discount which states that the 

requesting party must be a student to receive the discount. Trust negotiation 

  10



www.manaraa.com

 

commences as the website discloses the policy governing the student discount to 

Johnny’s trust agent. His trust agent reads the policy and discovers that it can 

satisfy the policy by releasing Johnny’s credential to the website, and does so. 

The website’s trust agent asserts the received credential is valid and that the 

access control policy has been satisfied. The website grants Johnny the student 

discount. 

 

Figure 1: Architecture for Trust Negotiation 

 

 TrustBuilder, the current implementation of trust negotiation used by the Internet 

Security Research Lab (ISRL) at BYU, accepts digital credentials in the form of X.509v3 

certificates. These X.509v3 certificates must be digitally signed by a trusted third party in 

order to be considered valid. Access control policies are implemented as XML policies in 

the TPL format, used by IBM’s Trust Establishment (TE) system [15]. The policies are 

verified using TE’s policy compliance checker. Policies and credentials are exchanged 

using the protocol on which the service is requested. TrustBuilder has been implemented 

to negotiate trust over HTTP, SSH, TLS [17], and SMTP [18].  

  11



www.manaraa.com

 

2.3 Content-Triggered Trust Negotiation 

Content-triggered trust negotiation allows the client to initiate the negotiation to 

verify that the server can be trusted with sensitive information. In order to discover 

sensitive information, content-triggered trust negotiation employs content analysis. 

Because client content is dynamic, it is impossible to create a resource-to-policy mapping 

for every possible combination of sensitive resources. To cope, content-triggered trust 

negotiation dynamically generates a policy each time sensitive information is filtered. 

Figure 2 illustrates the state diagram for dynamic client content access control. 

 

 

 Figure 2: State diagram for dynamic client content access control system in content triggered trust 

negotiation 

 

  12



www.manaraa.com

 

The first state that CTTN enters is the “Content Classification” state. Here CTTN 

uses document classification methods to determine the sensitivity of the content being 

transmitted. CTTN allows for a variety of content classification domains in order to 

support a wide range of classification techniques. To generalize the classification model, 

there are two parts to classification: the set of queries (Q) and the content (m). The 

classify formula (see Figure 3) explains how a set of content types (T) can be found by 

taking the union of each content type returned by the sim (filter function) for each of the 

individual queries (q) found in Q. 

 

TqmsimQmclassify
Qq

==
∈∀
U ),(),(  

Figure 3: Content-triggered trust negotiation’s content classification function 

 

To illustrate this model, assume there is a user with a social security number that 

is considered sensitive. The user creates a query to detect the disclosure of this number. 

This query could be a simple query requiring pattern matching, or more complex 

algebraic, probabilistic, or machine learning algorithms. Each query is associated with a 

content type, which is then mapped to a policy. This enables CTTN to be easily managed, 

giving it a feel similar to role-based access control where multiple queries (users) fall 

under the same content type (group). 

If sensitive content is found, CTTN either continues to the dynamic policy 

creation state, or discloses the non-sensitive content. CTTN contains a dynamic policy 

module which maintains a database of mappings between content types and access 

control policies. This module is used in the dynamic policy creation state to create a 

  13



www.manaraa.com

 

policy from all the policies governing each sensitive content type found in the submitted 

content.  

The conjunction of each policy’s role expression is used to form this “super” 

policy. The policy is then simplified using Boolean algebra rules; absorption [a ∧ (a ∨ b) 

= a ∨ (a ∧ b) = a] , distributive [(a ∧ b) ∨ (b ∧ c) = b ∧ (a ∨ c)], and idempotent [a ∧ a = 

a and a ∨ a = a]. The client’s trust agent uses the final product of this simplification in 

trust negotiation [16] [18].  

The filtering process of content-triggered trust negotiation takes place after the 

browser has posted that data to the web server and before the web server receives the 

posted data. A clever attacker may use a client-side scripting language such as JavaScript 

to encrypt any posted data before it is sent to the proxy in order to avoid CTTN’s filter 

from detecting the sensitive data being posted. This would cause the sim function to 

return an empty set of content types resulting in the content being classified as “not 

sensitive”. The server would then receive the sensitive information in encrypted form 

without having to negotiate trust. The server could easily decrypt the sensitive 

information using the proper decryption algorithm in order to access the sensitive data.

  14



www.manaraa.com

 

Chapter 3  

Phishing Warden 

This chapter discusses the design and implementation of Phishing Warden. 

3.1 Design 

The design of Phishing Warden includes three goals: 

1. Prevent client-side scripting from obfuscating form data before filtering software 

can scan the form for sensitive information. 

2. Enable users to more easily control the execution of client-side scripts for a given 

domain. 

3. Remember each site that a user deems trustworthy and the information disclosed 

to each trusted site. 

Because phishing attackers send e-mails with misleading URLs that reference a 

forged website, Phishing Warden is designed to assist users in safely visiting web sites by 

providing users with greater assurance that a website can be trusted with sensitive 

information such as a credit card number or a social security number. Phishing Warden 

leverages trust negotiation to establish confidence in web sites.  

Trust negotiation uses access control policies to safeguard sensitive data. For 

example, a simple access control policy might specify that the role Better Business 

Bureau (BBB) Member must be satisfied before credit card information is released.  The 

party requiring the credit card information can demonstrate they are a BBB member by 

sending their BBB credential. For trust negotiation to be effective, the access control 

policies governing the release of sensitive resources must be designed to eliminate the 

possibility of leaking sensitive information to an untrusted party. Phishing Warden 

  15



www.manaraa.com

 

assumes that users will not configure their own access control policies since it may be a 

complex and time consuming task. Instead, security experts are relied upon to provide the 

policies. 

In order for Phishing Warden to be effective, it must be able to glean the specific 

information types the web form is asking for so that it can automatically fill in the web 

form accordingly. If the web form is created according to the Electronic Commerce 

Modeling Language (ECML) [12], a form field naming standard (see Appendix A for an 

example), then Phishing Warden has a systematic way of extracting the type of 

information required and determining whether trust negotiation is needed for that data. If 

the web form does not follow the ECML, then the AutoFill feature fails and no data is 

inserted into the web form. 

Previous solutions that address phishing attacks require the disabling of client-

side scripts in order to thwart attacks that obfuscate sensitive data. This is due to the 

power given scripts to manipulate any data being sent. Disabling client-side scripts 

hampers usability, as almost every website requires JavaScript (the most commonly used 

client-side scripting language) to navigate through and use the website. Phishing Warden 

must include the ability to successfully detect phishing attacks with client-side scripting 

enabled. 

To address post data obfuscation while still allowing the execution of client-side 

scripts, the content analysis of sensitive information must occur before client-side 

scripting can obfuscate the data. There are many layers to network capable applications 

(see Figure 4). Phishing Warden must place this functionality at an appropriate position 

in the application layer that enables Phishing Warden to detect phishing attacks when 

  16



www.manaraa.com

 

client-side scripting is enabled by negotiating trust on sensitive content types requested in 

the form. This approach maintains usability by enabling client-side scripts while also 

ensuring the integrity of the filtering process.  

 

Application Layer 
HTTP 

 

Transport Layer 
TCP 

 

Network Layer 
IP 

 

Physical Layer 
Ethernet 

se
nd

in
g 

receiving 

 

Figure 4: Flow of information in an Internet browser 
 

Phishing Warden creates a buffer of protection between the Internet and the web 

client by utilizing IE’s plug-in interface, the Browser Helper Object (BHO) [13]. The 

BHO allows Phishing Warden to monitor all HTML forms at the user’s request, and 

verify that the server is trustworthy of each input field before submitting the data (see 

Figure 5). This act of verifying before submitting eliminates the threat of client-side 

obfuscation that scripts pose.  

  17



www.manaraa.com

 

 

Figure 5: Model of trust negotiation without a proxy by using the browser plug-in Phishing Warden 
 

As previously stated in the introduction, currently there is no means provided for 

users to easily adjust security settings for individual domains in IE. Controlling the 

browser’s execution of client-side scripts is a tedious task requiring eight mouse clicks by 

the user via three dialogues to finally effectuate the desired change in security level. 

Currently, IE allows users to divide domains into separate security zones. Associated 

with each security zone is a security level which sets the permission for a site to run 

scripts and download and execute programs with or without prompts. There is no method 

for a user to change a site’s security zone, except to remove it from the current zone and 

insert it into the new zone. Other browsers, such as Mozilla and Netscape, do not allow 

for the customization of security zones for individual sites, offering an all or nothing 

approach. By placing a widget on the tool bar for controlling browser security, Phishing 

Warden permits users to more easily manage the running of client-side scripts based on 

the domain name of the web server. 

  18



www.manaraa.com

 

Controlling client-side scripts is only one aspect of IE’s security settings. IE 

security settings also control the download and installation of software from the Internet. 

Many times a user is presented with pop-up windows displaying ads and dialogue boxes 

and a yes/no prompt to install new software.  By accidentally clicking yes, in order to 

quickly get rid of a dialogue box, the user could enable the installation of malicious 

software on the computer. Recent attacks on IE use this vulnerability to install a BHO 

that attaches itself to IE and reads all the passwords the user submits over an HTTPS 

connection [2] . A user should not be presented with download prompts on untrusted sites 

that could attempt to install such malware. If a user wants the full functionality of a web 

page that includes scripts, she should be able to denote that the site is trustworthy by 

changing the security level for the domain. The user will then be prompted to install the 

new software and can respond by clicking yes or no. 

The current implementation of content-triggered trust negotiation permits users to 

override a failed trust negotiation, but it has no option to remember the site a user decides 

to trust. The present implementation classifies all data being submitted into content types.  

The server must successfully negotiate trust for each submitted content type before the 

data is released. If trust negotiation fails for any content type, a pop-up box containing an 

error message and a list containing all failed content types will be displayed for the user 

to read. The pop-up error message states that trust negotiation has failed and prompts the 

user to check if the data should nevertheless be submitted. A user is presented with this 

pop-up box each time trust negotiation fails, even when the user has previously expressed 

trust in the site during the same session.  

  19



www.manaraa.com

 

Phishing Warden extends the ability to express trust in web sites that have failed 

trust negotiation by allowing the user to manage a list of trusted domains. Each trusted 

domain is associated with a list of content types. A user expresses trust in a domain to 

receive a given set of content types. Each time a user attempts to submit data to a domain 

through IE, Phishing Warden verifies that the domain is on the trusted domains list and 

the domain is trusted with all submitted content types. If so, trust negotiation is 

unnecessary. Trust negotiation will only take place for those content types for which the 

domain is not trusted. This provides an easy override method for failed trust negotiations 

that the user can establish on the first visit and use on subsequent visits, such as a web 

log-in page. 

Phishing Warden maintains a list of previously trusted domains in a file on the 

hard drive so that trust does not have to be reestablished when a user revisits a website. 

Each domain name is associated with the sensitive content types that were previously 

disclosed. There is a risk that an attacker could modify the file to cause Phishing Warden 

to trust a web site that the user does not trust, or to disclose additional data to a trusted 

web site that the user does not wish to disclose. To prevent such an attack, Phishing 

Warden stores a message authentication code (MAC) in the file to verify the integrity of 

the file. Phishing Warden also encrypts the files containing the list of trusted domains to 

prevent prying eyes from discovering a possibly sensitive list of trusted sites.  

 

  20



www.manaraa.com

 

3.2 Implementation 

Phishing Warden is a browser helper object (BHO) that is capable of negotiating 

trust for sensitive content. Phishing Warden contains three components; a toolbar, a 

Sensitive Data Manager, and a Trust Manager (see Figure 6). Phishing Warden exists as 

one dynamic link library (DLL). 

 

 

Figure 6: The components of Phishing Warden 
 
3.2.1 Browser Helper Object 

A Browser Helper Object (BHO) is a COM object that plug-in applications use to 

interface with IE. Phishing Warden is a BHO that interfaces with the browser in order to 

negotiate the disclosure of sensitive data. Phishing Warden has three components that 

control the release of sensitive data: the toolbar, the Sensitive Data Manager, and the 

  21



www.manaraa.com

 

Trust Manager. Phishing Warden receives commands from the toolbar and uses the 

Sensitive Data and Trust Managers to effectuate these commands. 

In order for Phishing Warden to AutoFill the forms on the current web page in IE, 

the specific information types must be gleaned from the form. To accomplish this, 

Phishing Warden scans the current web page for input elements that contain a name field 

that Phishing Warden uses to discover the information requested by the web form. All 

sensitive information governed by Phishing Warden is associated with a field name and a 

content type. The content type is the security classification used by TrustBuilder to 

determine the policy the web server must satisfy before the resource being requested is 

released. Not all information handled by Phishing Warden is sensitive. For non-sensitive 

data, specifying no content type permits Phishing Warden to release the information. 

3.2.2 Toolbar 

The Phishing Warden toolbar provides users with an interface to trust negotiation, 

allowing them to request that Phishing Warden fill a web form with information the 

server is trusted to receive. To fill the web form, Phishing Warden checks the name field 

of each input tag against a list of name fields. Phishing Warden maintains a mapping 

between these field names and sensitive content types. The toolbar also contains security 

buttons that enable the user to set the security zone for the current domain. According to 

the MSDN [9], IE toolbars are actually tool bands which are COM objects. Programs can 

call COM objects using the corresponding DLL or executable found in the Windows 

registry. IE checks the registry for active tool bands and invokes them. 

Phishing Warden displays red, orange, yellow, and green boxes on the toolbar 

corresponding to the following security zones: High, Medium, Medium-low, and Low. 

  22



www.manaraa.com

 

(see Figure 7). IE always displays the current security zone on the status bar in the 

bottom right corner of the browser. When a user changes the security zone, the toolbar 

calls the BHO, which changes the registry setting for the current website’s domain. The 

changes do not come into effect until the current web page is refreshed. Phishing Warden 

automatically refreshes the current page when a security zone change occurs in order to 

avoid potential security vulnerabilities.  

 

 

Figure 7: Phishing Warden toolbar 
 

To effectuate the changes in security zone, Phishing Warden updates the 

Windows registry entry that holds the site’s security zone. Since IE refreshes the security 

zone without having to restart the application, the user’s experience is seamless. Each 

security zone has an associated security level (see Table 1). The toolbar uses IE’s default 

security zones and levels. 

The default security levels for IE are as follows: 

• High provides the most security, but at a cost of functionality, and is 

recommended for sites thought to be harmful.  

• Medium provides for safe browsing while still maintaining functionality. 

Users are prompted to grant explicit permission for running potentially 

harmful programs.  

• Medium-low is the same as Medium, except it has fewer prompts by enabling 

some features automatically.  

  23



www.manaraa.com

 

• Low has minimal safeguards and warning prompts, and allows most content to 

be downloaded and run without prompting the user [29].  

The following table illustrates the default security mappings between security zones 

and security settings: 

 

Security Zone Default Security Level 

Internet Medium 

Local intranet Medium-low 

Trusted sites Low 

Restricted sites High 

 

Table 1: Default security zone to security level mappings 

 

An analysis of the Windows Registry indicates how IE modifies the registry to adjust 

the security level of website domains. When a user adds a website domain to a security 

zone through IE’s security options, a new registry entry appears in 

HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap 

\ProtocolDefaults\http and https. If the user moves the domain from one security zone to 

another, IE changes only the registry key’s value. Phishing Warden can leverage this to 

insert a new entry at will and change its value whenever the user desires. This affects the 

user’s browsing experience by allowing Phishing Warden to manage changing between 

  24



www.manaraa.com

 

security zones. IE will automatically read the registry for any new entries and adopt any 

changes in security. 

The toolbar also contains a configuration GUI that appears when the user presses the 

button labeled PW (see Figure 8). This GUI interacts with the Sensitive Data Manager to 

set and retrieve the user’s stored sensitive information. Phishing Warden associates each 

value entry with a form field name for later use with AutoFill. Besides the form field 

name, Phishing Warden associates each sensitive value entry with a content type that 

maps the sensitive value to an access control policy. A blank content type field indicates 

that the value is not sensitive.  

For surfing convenience, Phishing Warden remembers any site that the user accepts 

as trustworthy of certain sensitive information. Phishing Warden adds a check box that 

enables this memory feature. This check box appears on the failed negotiation pop-up. If 

the user checks the box, Phishing Warden will store the current domain name of the page 

the user is visiting along with the corresponding content types that the user permits 

Phishing Warden to override. As long as web forms from the domain request no new 

content types, Phishing Warden will submit the sensitive information to that domain 

without prompting the user for permission. The user can remove the trusted domain by 

editing the list of trusted sites stored on the computer via the Phishing Warden 

Configuration GUI. 

  25



www.manaraa.com

 

 

Figure 8: Phishing Warden sensitive type configuration GUI 
 

3.2.3 Sensitive Data Manager 

The last part of Phishing Warden concerns the storing of sensitive information using 

the Sensitive Data Manager. SpoofGuard and CTTN avoid storing a plaintext copy of 

sensitive information by storing only a one-way hash of the data. In contrast, Phishing 

Warden must have access to the plaintext data in order to automatically fill in the form 

fields. To do this, Phishing Warden stores user data in an encrypted file on the local 

  26



www.manaraa.com

 

machine. When a user presses the AutoFill button or the PW configuration button, he is 

prompted for a password to decrypt the file. A user is able to unlock the data only if he 

presents the correct password.  

Although entering a password requires more steps for a user to fill out a form than 

just pressing a button, it is usually less information to type compared to completing an 

entire form. To limit the number of prompts a user receives, Phishing Warden requests a 

password only the first time the sensitive information needs to be accessed during a 

session. This password is stored in memory for as long as the user’s IE session remains 

open.  

Phishing Warden derives a key to encrypt or decrypt the sensitive information from 

the password. The key is generated using PBKDF2, a password based key derivation 

function from PKCS #5 [22]. To ensure strong encryption, PBKDF2 generates a 128 bit 

key from the user’s password. Crypto++ Library 5.2.1 contains the PBKDF2 and is freely 

available to the public [10]. 

Crypto++ also has the necessary functions to enable Phishing Warden to encrypt and 

decrypt the sensitive user data. The current implementation of Phishing Warden uses 

Crypto++’s AES function as the encryption/decryption algorithm. AES accepts keys of 

length 128, 192, 256, or multiples of 32 beyond 256. AES was chosen for its wide 

acceptance as a symmetric block cipher.  

To protect sensitive data from being accessed in virtual memory, it is necessary 

for the Sensitive Data Manager to pin the pages of memory containing sensitive data. 

This prevents the sensitive data from being written to disk during a page fault. If the 

sensitive data is written to disk, a wily attacker could search the disk for the sensitive data 

  27



www.manaraa.com

 

and find it in unencrypted form. The Windows Platform SDK contains memory 

management functions that allow a programmer to override typical OS behavior. 

Phishing Warden uses VirtualLock from the Platform SDK to prevent Windows from 

caching Phishing Warden’s sensitive variables to disk [27].  

3.2.4 Trust Manager 

For trust negotiation to occur, a communication link between the client (browser) 

and the server (web server) needs to be established. Both client and server require trust 

agents to process the trust negotiation headers sent between the client and server. The 

Trust Manager component of Phishing Warden handles the calls for trust negotiation, 

taking a sensitive content type and a web server as the only input. Phishing Warden 

initializes the Trust Manager once per AutoFill request. If Phishing Warden finds several 

sensitive content types in a web form, it invokes the Trust Manager to negotiate the 

release of each unique content type found in the web form.  

The Trust Manager relays all trust negotiation requests to the client’s trust agent 

using SOAP RPC. The Trust Manager talks to the client’s trust agent and transmits the 

trust negotiation information in an HTTPS session with the server, separate from the 

browser’s HTTPS session. The Trust Manager redirects all replies from the server to the 

client’s trust agent and returns the result of the trust negotiation, success or failure, to 

Phishing Warden.   

When a user clicks the AutoFill button, IE calls the Phishing Warden BHO with a 

mouse-click event. Phishing Warden searches through the current web page for HTML 

text input tags. Each text input tag contains a name field that Phishing Warden sends to 

the Sensitive Data Manager to find the associated sensitive data type. To avoid possible 

  28



www.manaraa.com

 

mismatches, Phishing Warden assumes that the content of the input tag name fields 

follows the ECML, otherwise Phishing Warden ignores the text input tag. If Phishing 

Warden finds a matching sensitive content type, then Phishing Warden negotiates for the 

release of that data type by calling negotiate on the Trust Manager, giving only the name 

of the server with which to negotiate trust and the sensitive content type to negotiate. 

Phishing Warden extracts the name of the server from the domain name contained in the 

IE address bar. Phishing Warden assumes that the web server at this location can interpret 

the trust negotiation headers sent in the HTTP request. 

If the Trust Manager returns a failed trust negotiation result, Phishing Warden 

adds the failed content type to a list of failed content types to be displayed to the user 

after checking all input fields. If trust negotiation succeeds, the Trust Manager adds the 

domain name to a list of trusted domains and the sensitive data types for which the 

domain has successfully negotiated trust. The Trust Manager caches the list in memory 

for the length of the browser session to eliminate redundant negotiations. At the end of all 

negotiations, Phishing Warden automatically fills in the value field of the text input tags 

with the non-sensitive and sensitive values for which the server is trusted. 

The Trust Agent’s SOAP RPC interface requires the implementation of the following 

steps for the Trust Manager to successfully negotiate trust: 

1. The Trust Manager creates the Trust Agent. 

2. The Trust Manager initializes the Trust Agent by calling the init function, 

giving the location of the TrustBuilder XML configuration file.  

3. The Trust Manager initiates the trust negotiation by calling 

generateHelloMessage on the Trust Agent to enumerate the possible 

  29



www.manaraa.com

 

strategy families and formats and initializes the signature/verify material used to 

verify certificates. 

4. The Trust Manager’s Trust Agent receives a completed HelloMessage from 

the server in receiveClientHelloMessage and concludes initialization. 

5. The Trust Manager calls negotiate on the Trust Agent to begin negotiation. 

6. The Trust Agent negotiates trust until it reaches a state of success or failure and 

returns the results to the Trust Manager. 

The Trust Manager’s C++ soap interface to TrustBuilder was implemented using 

the gSOAP toolkit. gSOAP is open source Web services toolkit with an easy to use 

WSDL parser and skeleton function generator that creates C/C++ functions to interact 

with SOAP services on different platforms. The necessary RPC calls (init, 

generateHelloMessage, receiveServerHelloMessage, and negotiate) 

were created using gSOAP [14].  

  30



www.manaraa.com

 

Chapter 4  

Results and Analysis 

The main goals of Phishing Warden are to protect sensitive content from phishing 

attacks and provide users with an intuitive interface that is not prohibitive to use. 

Performance is a secondary concern. The following sections discuss Phishing Warden’s 

minimal impact on usability, a threat analysis of Phishing Warden, and performance 

results.  

4.1 Usability 

Programs that safeguard information are often ignored if the user cannot 

understand how to use them. An example of this is the security zones of Internet Explorer 

that are rarely used by the average user. The goal of Phishing Warden is to enable 

browser users to securely disclose sensitive information to parties they can trust. If users 

bypass Phishing Warden because it is difficult to use, then it cannot accomplish this goal.  

Phishing Warden addresses the usability problems of Internet Explorer’s security 

zones by reducing the number of steps that a user must take to change security zone 

settings. Instead of changing security zones by clicking through a series of menus and 

options, Phishing Warden enables users to change security zones with the click of a 

button that is easily visible on the toolbar. This functionality change increases browser 

security usability by allowing IE users to manage the execution of client-side scripts from 

the toolbar. 

Now instead of all web pages being seen as part of the Internet zone (medium 

security level), Phishing Warden increases security by making all web pages default to 

the non-trusted (high security level) zone. The user can adjust the security zone (website 

  31



www.manaraa.com

 

domain) when they deem necessary by simply pressing the corresponding security button 

on the toolbar. They can even change the security zone back to non-trusted after they are 

done visiting the website. To change the default security zone, a simple registry change is 

required to make the default security zone the non-trusted zone. This feature reduces the 

attack surface as a result of web sites receiving reduced permissions. 

To effectuate the change in default security zones, Phishing Warden must change 

the registry settings for HTTP and HTTPS. The registry keys can be found at: 

HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap 

\ProtocolDefaults\http and https. The default setting for these registry keys is 3 (Internet 

Zone). To change to a non-trusted zone for both HTTP and HTTPS, the keys should be 

changed to 4 (Restricted sites). 

Phishing Warden decreases usability by requiring web sites to conform to the 

ECML to allow the AutoFill feature to parse the HTML form for the requested data 

types. While users can map sensitive values to form field names that differ from the 

standard, this puts a large responsibility on the user and does not guarantee that Phishing 

Warden will comprehend the form names on every website. One solution is to create a 

list of commonly used synonyms for certain types of sensitive information. For example, 

the list for a field containing a social security number could look something like the 

following: ssn, social, soc_num, and social_security_number. Users could append new 

entries to the list each time they found a new variant on a web form. This approach 

requires manual intervention each time the user encounters a new field name in web 

forms. 

  32



www.manaraa.com

 

4.2 Threat Analysis 

 

Figure 9: Diagram illustrating the ways an identity thief might steal personal information 

sniffer,  
spoofing, 
misconfigure, 

observe/coerce

private key 
compromised 

hard disk 
search 

memory 
monitor 

User with Sensitive 
Data

     Application 

               2nd

                       Party

      Computer   
     Input

           

         Storage 

redirect

 Identity Thief 

     Impersonating 
Server 

  

  33



www.manaraa.com

 

4.2.1 r 

Figure 9 illustrates various ways that an identity thief might steal the personal 

information a user enters into a form on a web page. Identity theft could take place if an 

attacker is able to observe a user while he inputs or uses the sensitive data. For example, 

thieves can shoulder surf kiosks at a public library and view an Internet surfer’s credit 

card number during an online purchase. To protect themselves, users should be wary of 

onlookers when in public places and store sensitive data in a secure location. 

The next potential state where a loss can take place is inside the computer. Internet 

users entrusting their computer with sensitive information must takes steps to secure their 

machine. If a hacker gains access to the computer, installs a memory monitoring program 

such as a keystroke monitor, and possesses the means of extracting the data, then they 

may steal sensitive information. To better protect the sensitive data contained on the 

computer, users should take steps to reduce the threat from attacks such as Trojans, 

Internet worms, and e-mail viruses by installing anti-virus and firewall solutions.  

The applications a user trusts with sensitive information can also foster identity theft 

in three different ways: memory, misuse, and in transit. Applications store information in 

memory or on disk where attackers can find them. Firewall and anti-virus solutions can 

help prevent memory scanners. Misuse of applications or naivety can lead users to 

divulge information through applications with parties that they should not trust (e.g., 

misdirection of a request from a browser to a masquerading site). If an application 

transmits sensitive data to a trusted party using an insecure communication channel, it is 

possible for an eavesdropper to capture the sensitive information during transmission. 

Programs transmitting sensitive information should use secure protocols such as TLS. 

 Threat Analysis of Information Flow between Browser User and Web Serve

  34



www.manaraa.com

 

Once a user discloses sensitive information to a server, the user loses control over 

furt es not 

t. 

ding which 

web  

 

isk by 

usin

 

te a 

 

her dissemination of the information. If the server stores the information and do

adequately protect it, hackers might be able to obtain it. Another threat is the server’s 

administrator might decide to divulge the data to some other party that the user does not 

trust. These threats illustrate the need for users to carefully choose the servers they trus

Phishing Warden focuses on preventing identity thieves from misdirecting browser 

users. Trained users can use Phishing Warden to remove the guess work regar

 sites to trust with sensitive information. To do this, Phishing Warden must store the

sensitive information in a file on the user’s computer. This adds a new security concern 

that an attacker might exploit this file.  

Phishing Warden stores the user’s sensitive data using PKCS #5, which helps 

safeguard the information. However, the protection is only as strong as the user’s 

password. The risk of losing sensitive data is only present only when an attacker has

access to the encrypted file containing the sensitive data. Users can minimize this r

g a firewall/anti-virus solution.  

4.2.2 Private Key Compromise 

Since Phishing Warden relies on trust negotiation, it faces the same risks. The first 

risk is the compromise of a CA private key. For example, if an access control policy

states that a server must be a member of the Better Business Bureau (BBB), and an 

attacker steals the Better Business Bureau’s private key, then the attacker could crea

fake business credential signed with the stolen key. Any trust agents that receive the fake 

business credential would determine that the credential has been properly signed by the

BBB and would authenticate the fake business to the role of member of the BBB. To 

  35



www.manaraa.com

 

reso

 

asso

l 

w credential, while the legitimate company must 

gen y. 

acks into an account with administrative privileges 

r who has read access if there is a mistake in file 

per

 can 

l 

lve this problem, the BBB must revoke all credentials signed by the compromised 

private key, generate a new private key, acquire a new BBB certificate, and reissue all 

legitimate credentials. 

Another threat to trust negotiation is the loss of a trusted credential’s private key. If 

the BBB issues a credential to a legitimate company, and an attacker stole the company’s

ciated private key, then the attacker would be able to impersonate the legitimate 

company. Any user negotiating trust with the attacker would determine that the attacker 

was the legitimate company and their trust agent would authenticate the attacker to the 

role of member of the BBB. To resolve this problem, the BBB must revoke the credentia

and reissue the legitimate company a ne

erate a new key pair and reissue all credentials signed with the compromised ke

4.2.3 Attacking Stored Information 

By storing sensitive information in a file on the computer, Phishing Warden 

introduces a risk that the information may be stolen by someone who has access to the 

file. The thief can be a hacker who cr

or a legitimate user of the compute

missions. To mitigate this risk, Phishing Warden encrypts the sensitive information 

that it stores on the computer’s hard drive. 

Encryption is not invulnerable to attack by cryptographically savvy hackers who

try to use a brute force attack or dictionary attack to retrieve sensitive data stored on the 

user’s machine. While these two attacks are not new cryptographic attacks, the 

introduction of sensitive data stored on the user’s machine, even though encrypted, is a 

security risk. However, if Phishing Warden is used with an effective anti-virus/firewal

  36



www.manaraa.com

 

solution and the user has chosen a well-formed password, the threat of these new risks i

minimized. 

Brute force attacks 

s 

are an attempt to exhaustively search the key space for a key that 

wil

ce a 

. 

er 

e 128 bit key generated by PBKDF2 is large 

eno ractical 

 the 

h of the 

s 

l decrypt the file storing the sensitive information. A brute force attack on 128 bit 

symmetric keys is infeasible with today’s computers. Silverman [23] states that it would 

take 1016 years to brute force a 128 bit symmetric key. In the time it takes to brute for

128 bit symmetric key, a phishing victim not using Phishing Warden would have likely 

entered in the information by hand, making them an easy target for a key stroke monitor

Historically, the answer to thwarting a brute force attack is to increase the key size. 

The current implementation of the Phishing Warden uses the Advanced 

Encryption Standard (AES) with a 128 bit key. AES, also known as Rijndael, is a ciph

with variable block and key length. Th

ugh to prevent brute force attacks today. However, this attack could become p

in the future. Kaliski estimates that 128 bit keys are safe until 2031 when hardware 

technology is expected to catch up with the 128 bit key [19]. If unanticipated 

improvements in processor speeds and cracking algorithms appear, the time to break

encryption may be reduced, but the encryption key size can be increased to compensate 

for any new threats.  

A dictionary attack is a threat when using password-based encryption to safeguard 

secrets stored on a computer. An attacker who obtains a copy of the encrypted 

information can conduct the attack off-line. Instead of doing an exhaustive searc

entire space of possible passwords, an attacker uses a dictionary of commonly used word

and phrases to quickly guess probable, poorly chosen passwords. An encryption 

  37



www.manaraa.com

 

algorithm is only as strong as its weakest link, and for password-based encryption 

algorithms, that weakest link is a poorly chosen password. 

 

 

ny 

security  

eems 

eb pages. 

r 

ould hijack their machine. Phishing Warden’s main goal is to 

pro

le to a 

rute 

An experiment conducted at Purdue “illustrated how unconstrained user choices for 

passwords may compromise security, with at least 20% of all chosen passwords being

weak [24].” To prevent dictionary attacks, users should be informed that security depends

on the strength of their password. Strong passwords can even be generated by programs, 

or users can follow guidelines on creating strong passwords [3] [5].  

Another possibility of attack is if a user with permission to use the machine is able to 

access the encrypted file and successfully launch a dictionary attack. This bypasses a

 measures by using the operating system’s user privileges. To secure the

information from other users, the owner of the encrypted file must be the only user to 

have read permission. Administrator accounts would have to be trusted. While this s

like a new possibility for identity theft by co-workers, it was possible before, though in a 

different form. Users with access to the machine and administrator privileges could 

install a key stroke monitor which would catch any information entered into w

Phishing Warden relies heavily on a good anti-virus/firewall solution to provide for 

information security. The main goal of an anti-virus/firewall solution is to protect the use

from outsiders who w

tect the user from sending sensitive information to outsiders who would steal their 

identity. By storing sensitive information on the hard drive, the user is vulnerab

whole new form of identity theft that doesn’t require them to fall victim to a phishing 

attack. While the file containing sensitive information is encrypted, there is now a 

possibility for an attacker to decrypt the file once they gain read access through b

  38



www.manaraa.com

 

force or password guessing. By coupling Phishing Warden with a machine secured

viruses and worms, the chances of an attacker obtaining sen

 from 

sitive information are 

dec

se it completely 

rep

ser 

er 

Phi  

 that 

t 

thout 

tes 

reased significantly. 

4.2.4 Spoofing Attacks 

Ye et al. demonstrated another form of attack, called web spoofing, in which the 

downloaded web page creates a toolbar using Java and/or JavaScript to replicate the 

browser toolbar [31]. The reason this attack is so formidable is becau

licates the browser toolbar. If the toolbar is designed well and the user is using the 

corresponding browser with the default toolbar, users cannot distinguish between a real 

toolbar and a fake. The location bar is a critical part of any browser that lets the u

know which site they are visiting. The status bar on the bottom of a browser lets the us

know the current web page was sent over a secure communication. A fake toolbar can lull 

a user into submitting sensitive data by supplanting the location bar and SSL security 

lock. 

In the case of Phishing Warden, the replicated toolbar would need to include the 

shing Warden plug-in. If AutoFill is clicked in the spoofed toolbar, the attacker could

try to confuse the user with an error message that makes it appear that Phishing Warden 

is not working and causes the user complete the form manually. This attack requires

the attacker replicate the exact look and feel of the browser toolbar and launch it agains

someone using Phishing Warden.  

To prevent such an attack, JavaScript and Java applets should only be enabled on 

trusted sites, or Internet browsers should not be permitted to open new windows wi

displaying the standard toolbar. Disabling JavaScript and Java applets on un-trusted si

  39



www.manaraa.com

 

limits functionality, but increases overall security. Another solution is to present a 

different look to browser windows that are opened without toolbars enabled so tha

can distinguish between 

t users 

the two [30]. Phishing Warden copes with this attack by setting 

 high enough to prevent an elaborate deceptive toolbar from 

bein

t 

m 

 

 

isconfiguration 

ity 

 

 available for download by average users.  

the default security levels

g displayed. 

While Phishing Warden does AutoFill input form fields, a clever attacker may 

attempt to use other means of inputting information, such as buttons, applets, and selec

boxes. Phishing Warden does not detect other forms of user input. To prevent users fro

inputting sensitive information in an alternate fashion, Phishing Warden requires that all

form submission elements be input fields. To enforce such a ruling, users must be 

instructed not to use any other means of submitting data into web pages. Another solution

is to standardize non-text input so that Phishing Warden is able to discern the type of 

information requested, and how to insert the correct data into the non-text input. 

4.2.5 M

 The last security threat is due to mis-configured access control policies and secur

zones. If inexperienced users create their own access control policies, it is possible that 

non-trusted sites will be able to access the user’s sensitive information.  It is also possible

that user created policies will cause trust negotiation to fail when a site should be trusted. 

To avoid any possible confusion in policy creation, security experts should create the 

access control policy and make them

With incorrect security settings, malicious websites could compromise the 

integrity of the system.  Unsafe security settings could be set by a user misclicking a 

security button, or by the user’s lack of understanding of the true consequences of setting 

  40



www.manaraa.com

 

the security level at a low setting.  There are three possible solutions to help preven

from opening their browsers to security vulnerabilities: make all zones safe, remove 

unsafe zones from the toolbar, or use trust negotiation to manage security zones.   

The first solution involves changing the default security zones to safer settings 

where all zones p

t users 

rompt or disable browser options known to contain vulnerabilities.  

Wh uld 

zone 

trol 

hile 

d from mounting attacks that use the privileges of a lighter 

sec

o 

 100 

Mb/s ro ork 

As 

ile this does prevent users from opening themselves to malicious websites, it co

hinder usability with trusted websites. Removing unsafe zones from the toolbar is 

essentially the same as the first solution except that there are now fewer security zones.   

The last possibility is to remove control of security zones from the user and 

instead use trust negotiation to manage which sites will be given different security 

access based on access control policies. This solution shifts the weight of security 

decisions from the user to security experts that are relied upon to create the access con

policies. Using trust negotiation will ensure that safe zones are fully functional w

unsafe zones are prevente

urity zone. Trust negotiation as a browser security manager is left for future work. 

4.3 Performance Results 

Trust negotiation rapidly exchanges credentials and policies through a HTTP or 

HTTPS connection. The implementation of Phishing Warden completes a negotiation for 

one sensitive content type in approximately 1 second. The test was conducted using tw

Pentium 4 machines running at 3.2 GHz with 1GB of RAM connected through a

uter on the same LAN. Over a wide-area network such as the Internet, netw

latency would increase the total elapsed time for trust negotiation for each round trip. 

for encryption and decryption of the sensitive data, the time to encrypt and decrypt nine 

  41



www.manaraa.com

 

sensitive data types using AES averages 90 milliseconds. These times include the time to 

write to disk when encrypting, and the time to read from disk when decrypting. The o

significant impact on usability for the user is the time to enter the password before 

nly 

the 

first ne

cial 

 

pical 

satisfie  that 

e first 

gotiation during a session. 

The average user likely has sensitive data types for user account passwords, so

security number, credit card, CVV2, checking account number, mother’s maiden name,

employment information, contact information, and date of birth. In addition, the ty

access control policy controlling disclosure of a user’s sensitive data usually can be 

d by one or two roles. Experiments involving policies with two roles indicate

Phishing Warden performs adequately under these assumptions. Phishing Warden takes 

an average of 1030 milliseconds for trust negotiation to authenticate the server to th

role, and 60 milliseconds to authenticate a server to each additional role.  

  42



www.manaraa.com

 

Chapter 5 

Conclusions and Future Work 

5.1 Conclusions 

Overall the security of transferring sensitive information over the Internet has 

been in

 

 that 

toring sensitive 

information on the hard drive and decreasing browser security by misconfiguring security 

zones. 

Phishing Warden increases confidence upon successful completion of trust 

negotiation by allowing users to know that the server receiving the sensitive information 

has successfully authenticated to the required roles for each sensitive content type 

submitted. Users will also be more wary when web sites are not able to complete a trust 

negotiation. A warning message will appear stating that trust negotiation has not been 

successful, followed by the sensitive content types requested by the form. 

When the failed trust negotiation warning message is displayed, an option is given 

to ignore the failed trust negotiation and send the information despite the failure. By 

modifying content-triggered trust negotiation, Phishing Warden also includes a check box 

creased due to Phishing Warden which has successfully raised the bar for phishing 

attacks. With Phishing Warden, users will be more confident when they have submitted 

sensitive data and more hesitant to trust a website that cannot complete a successful trust

negotiation. Phishing Warden also makes it easy for users to convey trust in websites

do not have trust negotiation, helping improve the transition of trust negotiation from 

research into mainstream use. Along with trust negotiation aware browsers come new 

possibilities such as ensuring websites conform to privacy policies. Despite the benefits 

of Phishing Warden, there are two new significant security risks; namely s

  43



www.manaraa.com

 

to indicate whether this site should be permanently trusted for these sensitive content 

se of content-triggered trust negotiation by 

ious sites that the user has deemed trustworthy and not continually 

annoyin

 

btain a victim’s sensitive information. Security starts with the individual 

safegua

mory. 

 

ug-

types. This increases the ease of u

remembering prev

g the user with another pop-up. 

Although Phishing Warden raises the bar for phishing attacks, it also enables new 

forms of attack on the sensitive information. If attackers are aware that a machine uses 

Phishing Warden, and they are able to compromise the machine, then the attackers can 

retrieve the sensitive data in encrypted form and mount a dictionary and/or brute force 

attack on the encrypted file. To reduce the threat of dictionary attacks, a password 

checker can be integrated with Phishing Warden to identify easily broken passwords. 

Brute force attacks are not feasible for the average phishing attacker if the encryption key

size follows standard guidelines. 

The threat model (Fig. 9) in section 4.2 illustrated the paths an identity thief can 

use to o

rding their information from shoulder surfers while entering data into the 

computer. Once information is entered into the computer, an anti-virus/firewall solution 

is relied upon to prevent hackers from monitoring the keystrokes and computer me

Next, applications must be configured correctly and the user must know how to use them

securely. Lastly, information shared with the second party must be kept securely from 

identity thieves.  

Phishing Warden helps computer users foil phishing identity thieves who prey on 

web users by misdirecting their Internet applications. Through the use of a browser pl

in, Phishing Warden can control the submission of sensitive data through web forms. By 

  44



www.manaraa.com

 

funneling all sensitive data to be inserted into web forms into a central security manag

Phishing Warden is able to control the flow of information between web users

server, effectively preventing identity theft. 

5.2 Future work 

er, 

 and web 

red to 

on 

lso decreases usability as users must now type in each 

request d 

 on the 

 

at that security level. A variation of automated security levels includes 

using th

In order to increase overall security, sensitive data should not be stored on a hard 

drive. The need for storing sensitive data on the hard drive could be eliminated by 

implementing a pop-up window which asks the user for the sensitive information. The 

pop-up window would only appear when the AutoFill button is pressed and would 

contain all the values of the form that are being submitted. The user would be requi

type in each of the sensitive values corresponding to the name of the input field found 

the form. This increases information security, as no sensitive information is stored on 

disk for hackers to harvest, but it a

ed field. Another possible solution is to store sensitive information on a smart car

to eliminate the need for a user to input data and also refrain from storing the data

hard drive. 

Another possibility for future work is to increase security by removing the 

security buttons and replacing them with an automated system of changing security levels

based on trust negotiation. This can be done by creating access control policies for each 

security level. The web site must satisfy the policy before Phishing Warden will grant 

permission to run 

e principle of least privilege. Phishing Warden could accomplish this by using 

content analysis to determine the security features a web page is requesting and negotiate 

only on those features. 

  45



www.manaraa.com

 

Similar to the way trust negotiation could manage security levels, trust negotiation

could also be used to manage cookies. Web servers have the ability to set cookies in the 

headers of web pages they send. Each time a

 

 user requests a web page, the web browser 

’s cookie back to the server. This enables the server to cache 

informa

s 

 

trol 

dheres to the privacy practices published on its web site. Assuming that a 

trusted cy 

 

y practices received from the website are followed. 

sends the web site

tion unique to each user. IE allows users to manage their privacy through the 

controlling of cookies. Because IE uses the windows registry to control cookies, it i

possible for cookie settings to be managed by Phishing Warden according to the results

of trust negotiation. Websites could easily be authenticated using cookie access con

policies and the cookie privacy setting could be set accordingly. This addition to Phishing 

Warden would eliminate the need to configure cookie privacy settings for individual 

sites. Users of Phishing Warden would only be required to obtain an access control 

policy, created by security experts, that expresses the desires of the user and Phishing 

Warden would dynamically change the setting of privacy levels. 

Another potential use for Phishing Warden is to provide assurance to users that a 

web server a

organization was commissioned to audit website privacy practices, the priva

auditing body could issue certificates to websites that submitted to an audit. The 

certificates would state each privacy policy test that the web site has passed. These 

certificates could expire to ensure that the web site is periodically audited. A user could

configure Phishing Warden to require that a server satisfy certain privacy roles before the 

user’s private data is submitted. Used in conjunction with the WC3’s Platform for 

Privacy Preferences Project (P3P) [8], leveraging trust negotiation can provide greater 

assurance that the privac

  46



www.manaraa.com

 

Bibliog

 

 

t-Side Defense Against 

W

,” 

, 

-

 2004. 

raphy 

[1] Anti-Phishing Work Group, http://www.antiphishing.org, 2004. 

[2] J. Bambenek, “BHO Scanning Tool and New Scam Targets Bank Customers,” 

Handler's Diary, SANS.org, June 29, 2004. 

[3] R. Barbalace, “How to Choose a Good Password (And Why You Should),” MIT

Student Information Processing Board, http://www.mit.edu/afs/sipb/project/doc/

passwords/passwords.html, August 11, 1999. 

[4] “CERT® Advisory CA-2000-02 Malicious HTML Tags Embedded in Client Web 

Requests,” CERT, http://www.cert.org/advisories/CA-2000-02.html, February 3, 

2000. 

[5] “Choosing a Good Password,” Netscape, http://wp.netscape.com/security/ 

basics/passwords.html, July 26, 2004. 

[6] N. Chou, R. Ledesma, Y. Teraguchi, and J. Mitchell, “Clien

eb-Based Identity Theft,” Proceedings of the 2004 Network and Distributed 

System Security Symposium, San Diego, CA, February 2004. 

[7] “Cracking DES: Secrets of Encryption Research, Wiretap Politics & Chip Design

Electronic Frontier Foundation, July 1998. 

[8] L. Cranor, M. Langheinrich, M. Marchiori, M. Presler-Marshall, and J. Reagle

“The Platform for Privacy Preferences 1.0 (P3P1.0) Specification,” W3C 

Recommendation, April 16 2002. 

[9] “Creating Custom Explorer Bars, Tool Bands, and Desk Bands,” Microsoft 

Developer Network, http://msdn.microsoft.com/library/default.asp?url=/library/en

us/shellcc/platform/Shell/programmersguide/shell_adv/bands.asp, May

  47



www.manaraa.com

 

[10] “Crypto++ Library 5.2.1,” http://www.cryptopp.com, July 23, 2004. 

 ww.earthlink.net/ 

[12] erce,” 

[13] 

 

[15] zberg, Y. Mass, J. Mihaeli, D. Naor and Y. Ravid, ”Access Control Meets 

ium on 

ay 2000. 

 

, 

 

TLS,” Proceedings of the Network and 

[18] -side 

h ACM Symposium on Access Control Models 

[19]  

[11] “EarthLink Toolbar Featuring ScamBlocker,” EarthLink, http://w

earthlinktoolbar/download/, July 22, 2004. 

D. Eastlake and T. Goldstein, “ECML v1.1: Field Specifications for E-Comm

Request for Comments: 3106, April 2001. 

D. Esposito, “Browser Helper Objects: The Browser the Way You Want It,” 

Microsoft Corporation, January 1999. 

[14] “gSOAP: SOAP C++ Web Services,” http://www.cs.fsu.edu/~engelen/soap.html, 

July 23, 2004. 

A. Her

Public Key Infrastructure, Or: Assigning Roles to Strangers,” IEEE Sympos

Security and Privacy, Oakland, CA, M

[16] A. Hess, J. Holt, J. Jacobson, and K. E. Seamons, “Content-Triggered Trust 

Negotiation,” ACM Transactions on Information System Security, Vol. 7, No. 3

August 2004. 

[17] A. Hess, J. Jacobson, H. Mills, R. Wamsley, K. E. Seamons, and B. Smith, 

“Advanced Client/Server Authentication in 

Distributed System Security Symposium, San Diego, CA, February 2002. 

A. Hess and K. Seamons, “An Access Control Model For Dynamic Client

Content,” Proceedings of the Eight

and Technologies, Como, Italy, June 2003. 

B. Kaliski, “TWIRL and RSA Key Size,” RSA Laboratories Technical Report, May

6, 2003. 

  48



www.manaraa.com

 

[20] “Microsoft Security Bulletin MS04-004,” Microsoft, http://www.microsoft.com/ 

[21] .cnn.com/2004/TECH/internet/05/06/ 

[22] tandard,” RSA Laboratories, 

[23] Analysis of Symmetric and Asymmetric Key 

[24] bserving Reusable Password Choices,” Purdue Technical Report 

[25] 

White Paper, 

[26] 

bleweed White Paper, www.tumbleweed.com, 2004. 

[28] 

ton 

[29] Settings,” Microsoft, 

technet/security/bulletin/MS04-004.mspx, April 12, 2004. 

“'Phishing' Scams Shooting Up,” http://www

internet.phishing.reut/, May 6, 2004. 

“PKCS #5 v2.0: Password-Based Cryptography S

March 25, 1999. 

R. Silverman, “A Cost-Based Security 

Lengths,” RSA Laboratories Bulletin #13, April 2000. 

E. Spafford, “O

CSD–TR 92–049, July 31, 1992. 

G. Tally, R. Thomas, and T. Van Vleck, “Anti-Phishing: Best Practices For 

Institutions and Consumers,” McAfee Research 

www.mcafeesecurity.com, March 2004. 

Tumbleweed, “Using Digital Signatures to Secure Email and Stop Phishing 

Attacks,” Tum

[27] “VirtualLock,” Microsoft Developer Network, http://msdn.microsoft.com/ 

library/default.asp?url=/library/en-us/memory/base/virtuallock.asp, July 23, 2004. 

W. H. Winsborough, K. E. Seamons, and V. E. Jones, “Automated Trust 

Negotiation,” DARPA Information Survivability Conference and Exposition, Hil

Head, SC, January 2000. 

“Working with Internet Explorer 6 Security 

http://www.microsoft.com/windows/ie/using/howto/security/settings.asp, May 17, 

2004. 

  49



www.manaraa.com

 

[30] E. Ye, S.W. Smith, ``Trusted Paths for Browsers,'' Proceedings of the 11th Usenix

Security Symposium. San Francisco, CA, August 2002. 

 

mouth College, February 1, 2002. 

[31] E. Ye, Y. Yuan, and S. Smith, “Web Spoofing Revisited: SSL and Beyond,” 

Technical Report TR2001-417 at Dart

  50



www.manaraa.com

 

Appendix A – ECML Example 

The following is an example of an ECML compliant HTTP form taken from RFC 

3106. The input tags each have a name field which follows the ECML. The first input 

tag, named Ecom_Payment_Card_Name, is preceded by descriptive text in a paragraph 

tag that enables the user to read the form while the ECML field name hidden in the 

HTML code allows a computer programs to parse the form in a systematic manner. A 

properly configured Phishing Warden would associate the next input tag, 

Ecom_Payment_Card-_Number, with a sensitive data type to protect the user’s credit 

card number. Once Phishing Warden was called upon to AutoFill the page, this request 

for sensitive data would trigger a round of trust negotiations to determine whether the 

credit card number should be released.  

<HTML> 
<HEAD> 
<title> eCom Fields Example </title> 
</HEAD> 
<BODY> 
<FORM action="http://ecom.example.com" method="POST"> 

Please enter card information: 
<p>Your name on the card 
<INPUT type="text" name="Ecom_Payment_Card_Name" SIZE=40> 
<br>The card number 
<INPUT type="text" name="Ecom_Payment_Card_Number" SIZE=19> 
<br>Expiration date (MM YY) 
<INPUT type="text" name="Ecom_Payment_Card_ExpDate_Month" SIZE=2> 
<INPUT type="text" name="Ecom_Payment_Card_ExpDate_Year" SIZE=4> 
<INPUT type="hidden" name="Ecom_Payment_Card_Protocol"> 
<INPUT type="hidden" name="Ecom_SchemaVersion"  
value="http://www.ecml.org/version/1.1"> 
<br> 
<INPUT type="submit" value="submit"> <INPUT type="reset"> 

</FORM> 
</BODY> 
</HTML> 

  51


	Phishing Warden: Enhancing Content-Triggered Trust Negotiation to Prevent Phishing Attacks
	BYU ScholarsArchive Citation

	TITLE PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	1.1 THESIS STATEMENT
	1.2 MOTIVATING SCENARIO

	RELATED WORK
	2.1 SPOOFGUARD
	2.2 TRUST NEGOTIATION
	2.3 CONTENT-TRIGGERED TRUST NEGOTIATION

	PHISHING WARDEN
	3.1 DESIGN
	3.2 IMPLEMENTATION
	3.2.1 Browser Helper Object
	3.2.2 Toolbar
	3.2.3 Sensitive Data Manager
	3.2.4 Trust Manager


	RESULTS AND ANALYSIS
	4.1 USABILITY
	4.2 THREAT ANALYSIS
	4.2.1 Threat Analysis of Information Flow between Browser User and Web Server
	4.2.2 Private Key Compromise
	4.2.3 Attacking Stored Information
	4.2.4 Spoofing Attacks
	4.2.5 Misconfiguration

	4.3 PERFORMANCE RESULTS

	CONCLUSIONS AND FUTURE WORK
	5.1 CONCLUSIONS
	5.2 FUTURE WORK

	BIBLIOGRAPHY
	APPENDIX A - ECML EXAMPLE

